
141

CHAPTER 6

Advanced Routing

Chapter 5 dealt with the IPv4 routing subsystem. This chapter continues with the routing subsystem and discusses
advanced IPv4 routing topics such as Multicast Routing, Multipath Routing, Policy Routing, and more. This book
deals with the Linux Kernel Networking implementation—it does not delve into the internals of userspace Multicast
Routing daemons implementation, which are quite complex and beyond the scope of the book. I do, however, discuss
to some extent the interaction between a userspace multicast routing daemon and the multicast layer in the kernel.
I also briefly discuss the Internet Group Management Protocol (IGMP) protocol, which is the basis of multicast group
membership management; adding and deleting multicast group members is done by the IGMP protocol. Some basic
knowledge of IGMP is needed to understand the interaction between a multicast host and a multicast router.

Multipath Routing is the ability to add more than one nexthop to a route. Policy Routing enables configuring
routing policies that are not based solely on the destination address. I start with describing Multicast Routing.

Multicast Routing
Chapter 4 briefly mentions Multicast Routing, in the “Receiving IPv4 Multicast Packets” section. I will now discuss
it in more depth. Sending multicast traffic means sending the same packet to multiple recipients. This feature can
be useful in streaming media, audio/video conferencing, and more. It has a clear advantage over unicast traffic
in terms of saving network bandwidth. Multicast addresses are defined as Class D addresses. The Classless Inter-
Domain Routing (CIDR) prefix of this group is 224.0.0.0/4. The range of IPv4 multicast addresses is from 224.0.0.0 to
239.255.255.255. Handling Multicast Routing must be done in conjunction with a userspace routing daemon which
interacts with the kernel. According to the Linux implementation, Multicast Routing cannot be handled solely by
the kernel code without this userspace Routing daemon, as opposed to Unicast Routing. There are various multicast
daemons: for example: mrouted, which is based on an implementation of the Distance Vector Multicast Routing
Protocol (DVMRP), or pimd, which is based on the Protocol-Independent Multicast protocol (PIM). The DVMRP protocol
is defined in RFC 1075, and it was the first multicast routing protocol. It is based on the Routing Information Protocol
(RIP) protocol.

The PIM protocol has two versions, and the kernel supports both of them (CONFIG_IP_PIMSM_V1 and
CONFIG_IP_PIMSM_V2). PIM has four different modes: PIM-SM (PIM Sparse Mode), PIM-DM (PIM Dense Mode),
PIM Source-Specific Multicast (PIM-SSM) and Bidirectional PIM. The protocol is called protocol-independent because
it is not dependent on any particular routing protocol for topology discovery. This section discusses the interaction
between the userspace daemon and the kernel multicast routing layer. Delving into the internals of the PIM protocol
or the DVMRP protocol (or any other Multicast Routing protocol) is beyond the scope of this book. Normally, the
Multicast Routing lookup is based on the source and destination addresses. There is a “Multicast Policy Routing"
kernel feature, which is the parallel to the unicast policy routing kernel feature that was mentioned in Chapter 5 and
which is also discussed in the course of this chapter. The multicast policy routing protocol is implemented using the
Policy Routing API (for example, it calls the fib_rules_lookup() method to perform a lookup, creates a fib_rules_
ops object, and registers it with the fib_rules_register() method, and so on). With Multicast Policy Routing, the
routing can be based on additional criteria, like the ingress network interfaces. Moreover, you can work with more

CHAPTER 6 ■ ADVANCED ROUTING

142

than one multicast routing table. In order to work with Multicast Policy Routing, IP_MROUTE_MULTIPLE_TABLES
must be set.

Figure 6-1 shows a simple IPv4 Multicast Routing setup. The topology is very simple: the laptop, on the left,
joins a multicast group (224.225.0.1) by sending an IGMP packet (IP_ADD_MEMBERSHIP). The IGMP protocol is
discussed in the next section, “The IGMP Protocol.” The AMD server, in the middle, is configured as a multicast router,
and a userspace multicast routing daemon (like pimd or mrouted) runs on it. The Windows server, on the right, which
has an IP address of 192.168.2.10, sends multicast traffic to 224.225.0.1; this traffic is forwarded to the laptop via the
multicast router. Note that the Windows server itself did not join the 224.225.0.1 multicast group. Running ip route
add 224.0.0.0/4 dev <networkDeviceName> tells the kernel to send all multicast traffic via the specified network
device.

The next section discusses the IGMP protocol, which is used for the management of multicast group
membership.

The IGMP Protocol
The IGMP protocol is an integral part of IPv4 multicast. It must be implemented on each node that supports IPv4
multicast. In IPv6, multicast management is handled by the MLD (Multicast Listener Discovery) protocol, which uses
ICMPv6 messages, discussed in Chapter 8. With the IGMP protocol, multicast group memberships are established
and managed. There are three versions of IGMP:

 1. IGMPv1 (RFC 1112): Has two types of messages—host membership report and host
membership query. When a host wants to join a multicast group, it sends a membership
report message. Multicast routers send membership queries to discover which host
multicast groups have members on their attached local networks. Queries are addressed to
the all-hosts group address (224.0.0.1, IGMP_ALL_HOSTS) and carry a TTL of 1 so that the
membership query will not travel outside of the LAN.

Figure 6-1. Simple Multicast Routing setup

CHAPTER 6 ■ ADVANCED ROUTING

143

 2. IGMPv2 (RFC 2236): This is an extension of IGMPv1. The IGMPv2 protocol adds three new
messages:

a. Membership Query (0x11): There are two sub-types of Membership Query messages:
General Query, used to learn which groups have members on an attached network,
and Group-Specific Query, used to learn whether a particular group has any members
on an attached network.

b. Version 2 Membership Report (0x16).

c. Leave Group (0x17).

Note ■ IGMPv2 also supports Version 1 Membership Report message, for backward compatibility with IGMPv1. See

RFC 2236, section 2.1.

 3. IGMPv3 (RFC 3376, updated by RFC 4604): This major revision of the protocol adds a
feature called source filtering. This means that when a host joins a multicast group, it can
specify a set of source addresses from which it will receive multicast traffic. The source
filters can also exclude source addresses. To support the source filtering feature, the socket
API was extended; see RFC 3678, “Socket Interface Extensions for Multicast Source Filters.”
I should also mention that the multicast router periodically (about every two minutes)
sends a membership query to 224.0.0.1, the all-hosts multicast group address. A host that
receives a membership query responds with a membership report. This is implemented
in the kernel by the igmp_rcv() method: getting an IGMP_HOST_MEMBERSHIP_QUERY
message is handled by the igmp_heard_query() method.

Note ■ The kernel implementation of IPv4 IGMP is in net/core/igmp.c, include/linux/igmp.h and include/uapi/

linux/igmp.h.

The next section examines the fundamental data structure of IPv4 Multicast Routing, the multicast routing table,
and its Linux implementation.

The Multicast Routing Table
The multicast routing table is represented by a structure named mr_table. Let’s take a look at it:

struct mr_table {
 struct list_head list;
#ifdef CONFIG_NET_NS
 struct net *net;
#endif
 u32 id;
 struct sock __rcu *mroute_sk;
 struct timer_list ipmr_expire_timer;
 struct list_head mfc_unres_queue;

CHAPTER 6 ■ ADVANCED ROUTING

144

 struct list_head mfc_cache_array[MFC_LINES];
 struct vif_device vif_table[MAXVIFS];
 . . .
};

(net/ipv4/ipmr.c)

The following is a description of some members of the mr_table structure:

•฀ net: The network namespace associated with the multicast routing table; by default it is the
initial network namespace, init_net. Network namespaces are discussed in Chapter 14.

•฀ id: The multicast routing table id; it is RT_TABLE_DEFAULT (253) when working with a single
table.

•฀ mroute_sk: This pointer represents a reference to the userspace socket that the kernel
keeps. The mroute_sk pointer is initialized by calling setsockopt() from the userspace with
the MRT_INIT socket option and is nullified by calling setsockopt() with the MRT_DONE
socket option. The interaction between the userspace and the kernel is based on calling the
setsockopt() method, on sending IOCTLs from userspace, and on building IGMP packets
and passing them to the Multicast Routing daemon by calling the sock_queue_rcv_skb()
method from the kernel.

•฀ ipmr_expire_timer: Timer of cleaning unresolved multicast routing entries. This timer is
initialized when creating a multicast routing table, in the ipmr_new_table() method, and
removed when removing a multicast routing table, by the ipmr_free_table() method.

•฀ mfc_unres_queue: A queue of unresolved routing entries.

•฀ mfc_cache_array: A cache of the routing entries, with 64 (MFC_LINES) entries, discussed
shortly in the next section.

•฀ vif_table[MAXVIFS]: An array of 32 (MAXVIFS) vif_device objects. Entries are added by
the vif_add() method and deleted by the vif_delete() method. The vif_device structure
represents a virtual multicast routing network interface; it can be based on a physical device or
on an IPIP (IP over IP) tunnel. The vif_device structure is discussed later in “The Vif Device”
section.

I have covered the multicast routing table and mentioned its important members, such as the Multicast
Forwarding Cache (MFC) and the queue of unresolved routing entries. Next I will look at the MFC, which is
embedded in the multicast routing table object and plays an important role in Multicast Routing.

The Multicast Forwarding Cache (MFC)
The most important data structure in the multicast routing table is the MFC, which is in fact an array of cache entries
(mfc_cache objects). This array, named mfc_cache_array, is embedded in the multicast routing table (mr_table)
object. It has 64 (MFC_LINES) elements. The index of this array is the hash value (the hash function takes two
parameters—the multicast group address and the source IP address; see the description of the MFC_HASH macro in
the “Quick Reference” section at the end of this chapter).

Usually there is only one multicast routing table, which is an instance of the mr_table structure, and a reference
to it is kept in the IPv4 network namespace (net->ipv4.mrt). The table is created by the ipmr_rules_init() method,
which also assigns net->ipv4.mrt to point to the multicast routing table that was created. When working with the
multicast policy routing feature mentioned earlier, there can be multiple multicast policy routing tables. In both
cases, you get the routing table using the same method, ipmr_fib_lookup(). The ipmr_fib_lookup() method gets
three parameters as an input: the network namespace, the flow, and a pointer to the mr_table object which it should

CHAPTER 6 ■ ADVANCED ROUTING

145

fill. Normally, it simply sets the specified mr_table pointer to be net->ipv4.mrt; when working with multiple tables
(IP_MROUTE_MULTIPLE_TABLES is set), the implementation is more complex. Let’s take a look at the mfc_cache
structure:

struct mfc_cache {
 struct list_head list;
 __be32 mfc_mcastgrp;
 __be32 mfc_origin;
 vifi_t mfc_parent;
 int mfc_flags;
 union {
 struct {
 unsigned long expires;
 struct sk_buff_head unresolved; /* Unresolved buffers */
 } unres;
 struct {
 unsigned long last_assert;
 int minvif;
 int maxvif;
 unsigned long bytes;
 unsigned long pkt;
 unsigned long wrong_if;
 unsigned char ttls[MAXVIFS]; /* TTL thresholds */
 } res;
 } mfc_un;
 struct rcu_head rcu;
 };

(include/linux/mroute.h)

The following is a description of some members of the mfc_cache structure:

•฀ mfc_mcastgrp: the address of the multicast group that the entry belongs to.

•฀ mfc_origin: The source address of the route.

•฀ mfc_parent: The source interface.

•฀ mfc_flags: The flags of the entry. Can have one of these values:

MFC_STATIC: When the route was added statically and not by a multicast routing •฀
daemon.

MFC_NOTIFY: When the RTM_F_NOTIFY flag of the routing entry was set. See the •฀
rt_fill_info() method and the ipmr_get_route() method for more details.

The •฀ mfc_un union consists of two elements:

•฀ unres: Unresolved cache entries.

•฀ res: Resolved cache entries.

CHAPTER 6 ■ ADVANCED ROUTING

146

The first time an SKB of a certain flow reaches the kernel, it is added to the queue of unresolved entries
(mfc_un.unres.unresolved), where up to three SKBs can be saved. If there are three SKBs in the queue, the packet is
not appended to the queue but is freed, and the ipmr_cache_unresolved() method returns -ENOBUFS (“No buffer
space available”):

static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
{
 . . .
 if (c->mfc_un.unres.unresolved.qlen > 3) {
 kfree_skb(skb);
 err = -ENOBUFS;
 } else {
 . . .

}

(net/ipv4/ipmr.c)

This section described the MFC and its important members, including the queue of resolved entries and the queue
of unresolved entries. The next section briefly describes what a multicast router is and how it is configured in Linux.

Multicast Router
In order to configure a machine as a multicast router, you should set the CONFIG_IP_MROUTE kernel configuration
option. You should also run some routing daemon such as pimd or mrouted, as mentioned earlier. These routing
daemons create a socket to communicate with the kernel. In pimd, for example, you create a raw IGMP socket
by calling socket(AF_INET, SOCK_RAW, IPPROTO_IGMP). Calling setsockopt() on this socket triggers sending
commands to the kernel, which are handled by the ip_mroute_setsockopt() method. When calling setsockopt()
on this socket from the routing daemon with MRT_INIT, the kernel is set to keep a reference to the userspace socket
in the mroute_sk field of the mr_table object that is used, and the mc_forwarding procfs entry (/proc/sys/net/
ipv4/conf/all/mc_forwarding) is set by calling IPV4_DEVCONF_ALL(net, MC_FORWARDING)++. Note that the
mc_forwarding procfs entry is a read-only entry and can’t be set from userspace. You can’t create another instance
of a multicast routing daemon: when handling the MRT_INIT option, the ip_mroute_setsockopt() method checks
whether the mroute_sk field of the mr_table object is initialized and returns -EADDRINUSE if so. Adding a network
interface is done by calling setsockopt() on this socket with MRT_ADD_VIF, and deleting a network interface is done
by calling setsockopt() on this socket with MRT_DEL_VIF. You can pass the parameters of the network interface to
these setsockopt() calls by passing a vifctl object as the optval parameter of the setsockopt() system call. Let’s
take a look at the vifctl structure:

struct vifctl {
 vifi_t vifc_vifi; /* Index of VIF */
 unsigned char vifc_flags; /* VIFF_ flags */
 unsigned char vifc_threshold; /* ttl limit */
 unsigned int vifc_rate_limit; /* Rate limiter values (NI) */
 union {
 struct in_addr vifc_lcl_addr; /* Local interface address */
 int vifc_lcl_ifindex; /* Local interface index */
 };
 struct in_addr vifc_rmt_addr; /* IPIP tunnel addr */
};

(include/uapi/linux/mroute.h)

CHAPTER 6 ■ ADVANCED ROUTING

147

The following is a description of some members of the vifctl structure:

•฀ vifc_flags can be:

VIFF_TUNNEL: When you want to use an IPIP tunnel.•฀

VIFF_REGISTER: When you want to register the interface.•฀

VIFF_USE_IFINDEX: When you want to use the local interface index and not the local •฀
interface IP address; in such a case, you will set the vifc_lcl_ifindex to be the local
interface index. The VIFF_USE_IFINDEX flag is available for 2.6.33 kernel and above.

•฀ vifc_lcl_addr: The local interface IP address. (This is the default—no flag should be set for
using it).

•฀ vifc_lcl_ifindex: The local interface index. It should be set when the VIFF_USE_IFINDEX
flag is set in vifc_flags.

•฀ vifc_rmt_addr: The address of the remote node of a tunnel.

When the multicast routing daemon is closed, the setsockopt() method is called with an MRT_DONE option.
This triggers calling the mrtsock_destruct() method to nullify the mroute_sk field of the mr_table object that is used
and to perform various cleanups.

This section covered what a multicast router is and how it is configured in Linux. I also examined the vifctl
structure. Next, I look at the Vif device, which represents a multicast network interface.

The Vif Device
Multicast Routing supports two modes: direct multicast and multicast encapsulated in a unicast packet over a tunnel.
In both cases, the same object is used (an instance of the vif_device structure) to represent the network interface.
When working over a tunnel, the VIFF_TUNNEL flag will be set. Adding and deleting a multicast interface is done by
the vif_add() method and by the vif_delete() method, respectively. The vif_add() method also sets the device
to support multicast by calling the dev_set_allmulti(dev, 1) method, which increments the allmulti counter of
the specified network device (net_device object). The vif_delete() method calls dev_set_allmulti(dev, -1) to
decrement the allmulti counter of the specified network device (net_device object). For more details about the
dev_set_allmulti() method, see appendix A. Let’s take a look at the vif_device structure; its members are quite
self-explanatory:

struct vif_device {
 struct net_device *dev; /* Device we are using */
 unsigned long bytes_in,bytes_out;
 unsigned long pkt_in,pkt_out; /* Statistics */
 unsigned long rate_limit; /* Traffic shaping (NI) */
 unsigned char threshold; /* TTL threshold */
 unsigned short flags; /* Control flags */
 __be32 local,remote; /* Addresses(remote for tunnels)*/
 int link; /* Physical interface index */
};

(include/linux/mroute.h)

In order to receive multicast traffic, a host must join a multicast group. This is done by creating a socket in
userspace and calling setsockopt() with IPPROTO_IP and with the IP_ADD_MEMBERSHIP socket option. The
userspace application also creates an ip_mreq object where it initializes the request parameters, like the desired group
multicast address and the source IP address of the host (see the netinet/in.h userspace header). The setsockopt()
call is handled in the kernel by the ip_mc_join_group() method, in net/ipv4/igmp.c. Eventually, the multicast

CHAPTER 6 ■ ADVANCED ROUTING

148

address is added by the ip_mc_join_group() method to a list of multicast addresses (mc_list), which is a member
of the in_device object. A host can leave a multicast group by calling setsockopt() with IPPROTO_IP and with the
IP_DROP_MEMBERSHIP socket option. This is handled in the kernel by the ip_mc_leave_group() method, in net/
ipv4/igmp.c. A single socket can join up to 20 multicast groups (sysctl_igmp_max_memberships). Trying to join more
than 20 multicast groups by the same socket will fail with the -ENOBUFS error (“No buffer space available.”) See the
ip_mc_join_group() method implementation in net/ipv4/igmp.c.

IPv4 Multicast Rx Path
Chapter 4’s “Receiving IPv4 Multicast Packets” section briefly discusses how multicast packets are handled. I will now
describe this in more depth. My discussion assumes that our machine is configured as a multicast router; this means,
as was mentioned earlier, that CONFIG_IP_MROUTE is set and a routing daemon like pimd or mrouted runs on this
host. Multicast packets are handled by the ip_route_input_mc() method, in which a routing table entry (an rtable
object) is allocated and initialized, and in which the input callback of the dst object is set to be ip_mr_input(), in
case CONFIG_IP_MROUTE is set. Let’s take a look at the ip_mr_input() method:

int ip_mr_input(struct sk_buff *skb)
{
 struct mfc_cache *cache;
 struct net *net = dev_net(skb->dev);

First the local flag is set to true if the packet is intended for local delivery, as the ip_mr_input() method also
handles local multicast packets.

int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
struct mr_table *mrt;

/* Packet is looped back after forward, it should not be
* forwarded second time, but still can be delivered locally.
*/
if (IPCB(skb)->flags & IPSKB_FORWARDED)
 goto dont_forward;

Normally, when working with a single multicast routing table, the ipmr_rt_fib_lookup() method simply returns
the net->ipv4.mrt object:

mrt = ipmr_rt_fib_lookup(net, skb);
if (IS_ERR(mrt)) {
 kfree_skb(skb);
 return PTR_ERR(mrt);
}
if (!local) {

IGMPv3 and some IGMPv2 implementations set the router alert option (IPOPT_RA) in the IPv4 header when
sending JOIN or LEAVE packets. See the igmpv3_newpack() method in net/ipv4/igmp.c:

if (IPCB(skb)->opt.router_alert) {

The ip_call_ra_chain() method (net/ipv4/ip_input.c) calls the raw_rcv() method to pass the packet to the
userspace raw socket, which listens. The ip_ra_chain object contains a reference to the multicast routing socket,

CHAPTER 6 ■ ADVANCED ROUTING

149

which is passed as a parameter to the raw_rcv() method. For more details, look at the ip_call_ra_chain() method
implementation, in net/ipv4/ip_input.c:

if (ip_call_ra_chain(skb))
 return 0;

There are implementations where the router alert option is not set, as explained in the following comment; these
cases must be handled as well, by calling the raw_rcv() method directly:

} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
 /* IGMPv1 (and broken IGMPv2 implementations sort of
 * Cisco IOS <= 11.2(8)) do not put router alert
 * option to IGMP packets destined to routable
 * groups. It is very bad, because it means
 * that we can forward NO IGMP messages.
 */
 struct sock *mroute_sk;

The mrt->mroute_sk socket is a copy in the kernel of the socket that the multicast routing userspace application
created:

mroute_sk = rcu_dereference(mrt->mroute_sk);
 if (mroute_sk) {
 nf_reset(skb);
 raw_rcv(mroute_sk, skb);
 return 0;
 }
 }
}

First a lookup in the multicast routing cache, mfc_cache_array, is performed by calling the ipmr_cache_find()
method. The hash key is the destination multicast group address and the source IP address of the packet, taken from
the IPv4 header:

cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
if (cache == NULL) {

A lookup in the virtual devices array (vif_table) is performed to see whether there is a corresponding entry
which matches the incoming network device (skb->dev):

int vif = ipmr_find_vif(mrt, skb->dev);

The ipmr_cache_find_any() method handles the advanced feature of multicast proxy support (which is not
discussed in this book):

 if (vif >= 0)
 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
 vif);
}

CHAPTER 6 ■ ADVANCED ROUTING

150

/*
* No usable cache entry
*/
if (cache == NULL) {
 int vif;

If the packet is destined to the local host, deliver it:

if (local) {
 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
 ip_local_deliver(skb);
 if (skb2 == NULL)
 return -ENOBUFS;
 skb = skb2;
}

read_lock(&mrt_lock);
vif = ipmr_find_vif(mrt, skb->dev);
if (vif >= 0) {

The ipmr_cache_unresolved() method creates a multicast routing entry (mfc_cache object) by calling the ipmr_
cache_alloc_unres() method. This method creates a cache entry (mfc_cache object) and initializes its expiration time
interval (by setting mfc_un.unres.expires). Let’s take a look at this very short method, ipmr_cache_alloc_unres():

static struct mfc_cache *ipmr_cache_alloc_unres(void)
{
 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);

 if (c) {
 skb_queue_head_init(&c->mfc_un.unres.unresolved);

Setting the expiration time interval:

 c->mfc_un.unres.expires = jiffies + 10*HZ;
 }
 return c;
}

If the routing daemon does not resolve the routing entry within its expiration interval, the entry is removed from
the queue of the unresolved entries. When creating a multicast routing table (by the ipmr_new_table() method),
its timer (ipmr_expire_timer) is set. This timer invokes the ipmr_expire_process() method periodically. The
ipmr_expire_process() method iterates over all the unresolved cache entries in the queue of unresolved entries
(mfc_unres_queue of the mrtable object) and removes the expired unresolved cache entries.

After creating the unresolved cache entry, the ipmr_cache_unresolved() method adds it to the queue of
unresolved entries (mfc_unres_queue of the multicast table, mrtable) and increments by 1 the unresolved queue
length (cache_resolve_queue_len of the multicast table, mrtable). It also calls the ipmr_cache_report() method,
which builds an IGMP message (IGMPMSG_NOCACHE) and delivers it to the userspace multicast routing daemon by
calling eventually the sock_queue_rcv_skb() method.

I mentioned that the userspace routing daemon should resolve the routing within some time interval. I will not
delve into how this is implemented in userspace. Note, however, that once the routing daemon decides it should

CHAPTER 6 ■ ADVANCED ROUTING

151

resolve an unresolved entry, it builds the cache entry parameters (in an mfcctl object) and calls setsockopt()
with the MRT_ADD_MFC socket option, then it passes the mfcctl object embedded in the optval parameter of the
setsockopt() system call; this is handled in the kernel by the ipmr_mfc_add() method:

 int err2 = ipmr_cache_unresolved(mrt, vif, skb);
 read_unlock(&mrt_lock);

 return err2;
 }
 read_unlock(&mrt_lock);
 kfree_skb(skb);
 return -ENODEV;
}

read_lock(&mrt_lock);

If a cache entry was found in the MFC, call the ip_mr_forward() method to continue the packet traversal:

 ip_mr_forward(net, mrt, skb, cache, local);
 read_unlock(&mrt_lock);

 if (local)
 return ip_local_deliver(skb);

 return 0;

dont_forward:
 if (local)
 return ip_local_deliver(skb);
 kfree_skb(skb);
 return 0;
}

This section detailed the IPv4 Multicast Rx path and the interaction with the routing daemon in this path. The
next section describes the multicast routing forwarding method, ip_mr_forward().

The ip_mr_forward() Method
Let’s take a look at the ip_mr_forward() method:

static int ip_mr_forward(struct net *net, struct mr_table *mrt,
 struct sk_buff *skb, struct mfc_cache *cache,
 int local)
{
 int psend = -1;
 int vif, ct;
 int true_vifi = ipmr_find_vif(mrt, skb->dev);

 vif = cache->mfc_parent;

CHAPTER 6 ■ ADVANCED ROUTING

152

Here you can see update statistics of the resolved cache object (mfc_un.res):

cache->mfc_un.res.pkt++;
cache->mfc_un.res.bytes += skb->len;

if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
 struct mfc_cache *cache_proxy;

The expression (*, G) means traffic from any source sending to the group G:

 /* For an (*,G) entry, we only check that the incomming
 * interface is part of the static tree.
 */
 cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
 if (cache_proxy &&
 cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
 goto forward;
}
/*
 * Wrong interface: drop packet and (maybe) send PIM assert.
 */
if (mrt->vif_table[vif].dev != skb->dev) {
 if (rt_is_output_route(skb_rtable(skb))) {
 /* It is our own packet, looped back.
 * Very complicated situation...
 *
 * The best workaround until routing daemons will be
 * fixed is not to redistribute packet, if it was
 * send through wrong interface. It means, that
 * multicast applications WILL NOT work for
 * (S,G), which have default multicast route pointing
 * to wrong oif. In any case, it is not a good
 * idea to use multicasting applications on router.
 */
 goto dont_forward;
 }

 cache->mfc_un.res.wrong_if++;

 if (true_vifi >= 0 && mrt->mroute_do_assert &&
 /* pimsm uses asserts, when switching from RPT to SPT,
 * so that we cannot check that packet arrived on an oif.
 * It is bad, but otherwise we would need to move pretty
 * large chunk of pimd to kernel. Ough... --ANK
 */
 (mrt->mroute_do_pim ||
 cache->mfc_un.res.ttls[true_vifi] < 255) &&
 time_after(jiffies,
 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
 cache->mfc_un.res.last_assert = jiffies;

CHAPTER 6 ■ ADVANCED ROUTING

153

Call the ipmr_cache_report() method to build an IGMP message (IGMPMSG_WRONGVIF) and to deliver it to
the userspace multicast routing daemon by calling the sock_queue_rcv_skb() method:

 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
 }
 goto dont_forward;
}

The frame is now ready to be forwarded:

forward:
 mrt->vif_table[vif].pkt_in++;
 mrt->vif_table[vif].bytes_in += skb->len;

 /*
 * Forward the frame
 */
 if (cache->mfc_origin == htonl(INADDR_ANY) &&
 cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
 if (true_vifi >= 0 &&
 true_vifi != cache->mfc_parent &&
 ip_hdr(skb)->ttl >
 cache->mfc_un.res.ttls[cache->mfc_parent]) {
 /* It's an (*,*) entry and the packet is not coming from
 * the upstream: forward the packet to the upstream
 * only.
 */
 psend = cache->mfc_parent;
 goto last_forward;
 }
 goto dont_forward;
 }
 for (ct = cache->mfc_un.res.maxvif - 1;
 ct >= cache->mfc_un.res.minvif; ct--) {
 /* For (*,G) entry, don't forward to the incoming interface */
 if ((cache->mfc_origin != htonl(INADDR_ANY) ||
 ct != true_vifi) &&
 ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
 if (psend != -1) {
 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);

Call the ipmr_queue_xmit() method to continue with the packet forwarding:

 if (skb2)
 ipmr_queue_xmit(net, mrt, skb2, cache,
 psend);
 }
 psend = ct;
 }
 }
last_forward:

CHAPTER 6 ■ ADVANCED ROUTING

154

 if (psend != -1) {
 if (local) {
 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);

 if (skb2)
 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
 } else {
 ipmr_queue_xmit(net, mrt, skb, cache, psend);
 return 0;
 }
 }

dont_forward:
 if (!local)
 kfree_skb(skb);
 return 0;
}

Now that I have covered the multicast routing forwarding method, ip_mr_forward(), it is time to examine the
ipmr_queue_xmit() method.

The ipmr_queue_xmit() Method
Let’s take a look at the ipmr_queue_xmit() method:

static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
 struct sk_buff *skb, struct mfc_cache *c, int vifi)
{
 const struct iphdr *iph = ip_hdr(skb);
 struct vif_device *vif = &mrt->vif_table[vifi];
 struct net_device *dev;
 struct rtable *rt;
 struct flowi4 fl4;

The encap field is used when working with a tunnel:

 int encap = 0;

 if (vif->dev == NULL)
 goto out_free;

#ifdef CONFIG_IP_PIMSM
 if (vif->flags & VIFF_REGISTER) {
 vif->pkt_out++;
 vif->bytes_out += skb->len;
 vif->dev->stats.tx_bytes += skb->len;
 vif->dev->stats.tx_packets++;
 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
 goto out_free;
 }
#endif

CHAPTER 6 ■ ADVANCED ROUTING

155

When working with a tunnel, a routing lookup is performed with the vif->remote and vif->local, which
represent the destination and local addresses, respectively. These addresses are the end points of the tunnel. When
working with a vif_device object which represents a physical device, a routing lookup is performed with the
destination of the IPv4 header and 0 as a source address:

if (vif->flags & VIFF_TUNNEL) {
 rt = ip_route_output_ports(net, &fl4, NULL,
 vif->remote, vif->local,
 0, 0,
 IPPROTO_IPIP,
 RT_TOS(iph->tos), vif->link);
 if (IS_ERR(rt))
 goto out_free;
 encap = sizeof(struct iphdr);
} else {
 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
 0, 0,
 IPPROTO_IPIP,
 RT_TOS(iph->tos), vif->link);
 if (IS_ERR(rt))
 goto out_free;
}

dev = rt->dst.dev;

Note that if the packet size is higher than the MTU, an ICMPv4 message is not sent (as is done in such a case
under unicast forwarding); only the statistics are updated, and the packet is discarded:

if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
 /* Do not fragment multicasts. Alas, IPv4 does not
 * allow to send ICMP, so that packets will disappear
 * to blackhole.
 */

 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
 ip_rt_put(rt);
 goto out_free;
}

encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;

if (skb_cow(skb, encap)) {
 ip_rt_put(rt);
 goto out_free;
}

vif->pkt_out++;
vif->bytes_out += skb->len;

skb_dst_drop(skb);
skb_dst_set(skb, &rt->dst);

CHAPTER 6 ■ ADVANCED ROUTING

156

The TTL is decreased, and the IPv4 header checksum is recalculated (because the TTL is one of the IPv4 fields)
when forwarding the packet; the same is done in the ip_forward() method for unicast packets:

ip_decrease_ttl(ip_hdr(skb));

/* FIXME: forward and output firewalls used to be called here.
 * What do we do with netfilter? -- RR
 */
if (vif->flags & VIFF_TUNNEL) {
 ip_encap(skb, vif->local, vif->remote);
 /* FIXME: extra output firewall step used to be here. --RR */
 vif->dev->stats.tx_packets++;
 vif->dev->stats.tx_bytes += skb->len;
}

IPCB(skb)->flags |= IPSKB_FORWARDED;

/*
 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
 * not only before forwarding, but after forwarding on all output
 * interfaces. It is clear, if mrouter runs a multicasting
 * program, it should receive packets not depending to what interface
 * program is joined.
 * If we will not make it, the program will have to join on all
 * interfaces. On the other hand, multihoming host (or router, but
 * not mrouter) cannot join to more than one interface - it will
 * result in receiving multiple packets.
 */

Invoke the NF_INET_FORWARD hook:

 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
 ipmr_forward_finish);
 return;

out_free:
 kfree_skb(skb);
}

The ipmr_forward_finish() Method
Let’s take a look at the ipmr_forward_finish() method, which is a very short method—it is in fact identical to the
ip_forward() method:

static inline int ipmr_forward_finish(struct sk_buff *skb)
{
 struct ip_options *opt = &(IPCB(skb)->opt);

 IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
 IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);

CHAPTER 6 ■ ADVANCED ROUTING

157

Handle IPv4 options, if set (see Chapter 4):

 if (unlikely(opt->optlen))
 ip_forward_options(skb);

 return dst_output(skb);
}

Eventually, dst_output() sends the packet via the ip_mc_output() method, which calls the ip_finish_output()
method (both methods are in net/ipv4/route.c).

Now that I have covered these multicast methods, let’s get a better understanding of how the value of the TTL
field is used in multicast traffic.

The TTL in Multicast Traffic
The TTL field of the IPv4 header has a double meaning when discussing multicast traffic. The first is the same as in
unicast IPV4 traffic: the TTL represents a hop counter which is decreased by 1 on every device that is forwarding the
packet. When it reaches 0, the packet is discarded. This is done to avoid endless travelling of packets due to some
error. The second meaning of the TTL, which is unique to multicast traffic, is a threshold. The TTL values are divided
into scopes. Routers have a TTL threshold assigned to each of their interfaces, and only packets with a TTL greater
than the interface's threshold are forwarded. Here are the values of these thresholds:

•฀ 0: Restricted to the same host (cannot be sent out by any interface)

•฀ 1: Restricted to the same subnet (will not be forwarded by a router)

•฀ 32: Restricted to the same site

•฀ 64: Restricted to the same region

•฀ 128: Restricted to the same continent

•฀ 255: Unrestricted in scope (global)

See: “IP Multicast Extensions for 4.3BSD UNIX and related systems,” by Steve Deering, available at
www.kohala.com/start/mcast.api.txt.

Note ■ IPv4 Multicast Routing is implemented in net/ipv4/ipmr.c, include/linux/mroute.h, and

include/uapi/linux/mroute.h.

This completes my discussion of Multicast Routing. The chapter now moves on to Policy Routing, which enables
you to configure routing policies that are not based solely on the destination address.

Policy Routing
With Policy Routing, a system administrator can define up to 255 routing tables. This section discusses IPv4 Policy
Routing; IPv6 Policy Routing is discussed in Chapter 8. In this section, I use the terms policy or rule for entries that
are created by Policy Routing, in order to avoid confusing the ordinary routing entries (discussed in Chapter 5) with
policy rules.

CHAPTER 6 ■ ADVANCED ROUTING

158

Policy Routing Management
Policy Routing management is done with the ip rule command of the iproute2 package (there is no parallel for Policy
Routing management with the route command). Let’s see how to add, delete, and dump all Policy Routing rules:

You add a rule with the •฀ ip rule add command; for example: ip rule add tos 0x04 table
252. After this rule is inserted, every packet which has an IPv4 TOS field matching 0x04 will be
handled according to the routing rules of table 252. You can add routing entries to this table by
specifying the table number when adding a route; for example: ip route add default via
192.168.2.10 table 252. This command is handled in the kernel by the fib_nl_newrule()
method, in net/core/fib_rules.c. The tos modifier in the ip rule command earlier is one
of the available SELECTOR modifiers of the ip rule command; see man 8 ip rule, and also
Table 6-1 in the “Quick Reference” section at the end of this chapter.

You delete a rule with the •฀ ip rule del command; for example: ip rule del tos 0x04 table
252. This command is handled in the kernel by the fib_nl_delrule() method in net/core/
fib_rules.c.

You dump all the rules with the •฀ ip rule list command or the ip rule show command.
Both these commands are handled in the kernel by the fib_nl_dumprule() method in
net/core/fib_rules.c.

You now have a good idea about the basics of Policy Routing management, so let’s examine the Linux
implementation of Policy Routing.

Policy Routing Implementation
The core infrastructure of Policy Routing is the fib_rules module, net/core/fib_rules.c. It is used by three
protocols of the kernel networking stack: IPv4 (including the multicast module, which has a multicast policy routing
feature, as mentioned in the “Multicast Routing” section earlier in this chapter), IPv6, and DECnet. The IPv4 Policy
Routing is implemented also in a file named fib_rules.c. Don’t be confused by the identical name (net/ipv4/
fib_rules.c). In IPv6, policy routing is implemented in net/ipv6/fib6_rules.c. The header file, include/net/fib_
rules.h, contains the data structures and methods of the Policy Routing core. Here is the definition of the fib4_rule
structure, which is the basis for IPv4 Policy Routing:

struct fib4_rule {
 struct fib_rule common;
 u8 dst_len;
 u8 src_len;
 u8 tos;
 __be32 src;
 __be32 srcmask;
 __be32 dst;
 __be32 dstmask;
#ifdef CONFIG_IP_ROUTE_CLASSID
 u32 tclassid;
#endif
};

(net/ipv4/fib_rules.c)

CHAPTER 6 ■ ADVANCED ROUTING

159

Three policies are created by default at boot time, by calling the fib_default_rules_init() method: the local
(RT_TABLE_LOCAL) table, the main (RT_TABLE_MAIN) table, and the default (RT_TABLE_DEFAULT) table. Lookup
is done by the fib_lookup() method. Note that there are two different implementations of the fib_lookup() method
in include/net/ip_fib.h. The first one, which is wrapped in the #ifndef CONFIG_IP_MULTIPLE_TABLES block,
is for non-Policy Routing, and the second is for Policy Routing. When working with Policy Routing, the lookup is
performed like this: if there were no changes to the initial policy routing rules (net->ipv4.fib_has_custom_rules
is not set), that means the rule must be in one of the three initial routing tables. So, first a lookup is done in the local
table, then in the main table, and then the default table. If there is no corresponding entry, a network unreachable
(-ENETUNREACH) error is returned. If there was some change in the initial policy routing rules (net->ipv4.
fib_has_custom_rules is set), the_fib_lookup() method is invoked, which is a heavier method, because it iterates
over the list of rules and calls fib_rule_match() for each rule in order to decide whether it matches or not. See the
implementation of the fib_rules_lookup() method in net/core/fib_rules.c. (The fib_rules_lookup() method
is invoked from the __fib_lookup() method). I should mention here that the net->ipv4.fib_has_custom_rules
variable is set to false in the initialization phase, by the fib4_rules_init() method, and to true in the fib4_rule_
configure() method and the fib4_rule_delete() method. Note that CONFIG_IP_MULTIPLE_TABLES should be set
for working with Policy Routing.

This concludes my Multicast Routing discussion. The next section talks about Multipath Routing, which is the
ability to add more than one nexthop to a route.

Multipath Routing
Multipath Routing provides the ability to add more than one nexthop to a route. Defining two nexthop nodes can be
done like this, for example: ip route add default scope global nexthop dev eth0 nexthop dev eth1. A system
administrator can also assign weights for each nexthop—like this, for example: ip route add 192.168.1.10 nexthop
via 192.168.2.1 weight 3 nexthop via 192.168.2.10 weight 5. The fib_info structure represents an IPv4
routing entry that can have more than one FIB nexthop. The fib_nhs member of the fib_info object represents the
number of FIB nexthop objects; the fib_info object contains an array of FIB nexthop objects named fib_nh. So in
this case, a single fib_info object is created, with an array of two FIB nexthop objects. The kernel keeps the weight
of each next hop in the nh_weight field of the FIB nexthop object (fib_nh). If weight was not specified when adding a
multipath route, it is set by default to 1, in the fib_create_info() method. The fib_select_multipath() method is
called to determine the nexthop when working with Multipath Routing. This method is invoked from two places: from
the __ip_route_output_key() method, in the Tx path, and from the ip_mkroute_input() method, in the Rx path.
Note that when the output device is set in the flow, the fib_select_multipath() method is not invoked, because the
output device is known:

struct rtable *__ip_route_output_key(struct net *net, struct flowi4 *fl4) {
. . .
#ifdef CONFIG_IP_ROUTE_MULTIPATH
 if (res.fi->fib_nhs > 1 && fl4->flowi4_oif == 0)
 fib_select_multipath(&res);
 else
#endif
. . .

}

In the Rx path there is no need for checking whether fl4->flowi4_oif is 0, because it is set to 0 in the beginning
of this method. I won’t delve into the details of the fib_select_multipath() method. I will only mention that there
is an element of randomness in the method, using jiffies, for helping in creating a fair weighted route distribution,
and that the weight of each next hop is taken in account. The FIB nexthop to use is assigned by setting the FIB nexthop

CHAPTER 6 ■ ADVANCED ROUTING

160

selector (nh_sel) of the specified fib_result object. In contrast to Multicast Routing, which is handled by a dedicated
module (net/ipv4/ipmr.c), the code of Multipath Routing appears scattered in the existing routing code, enclosed
in #ifdef CONFIG_IP_ROUTE_MULTIPATH conditionals, and no separate module was added in the source code for
supporting it. As mentioned in Chapter 5, there was support for IPv4 multipath routing cache, but it was removed in
2007 in kernel 2.6.23; in fact, it never did work very well, and never got out of the experimental state. Do not confuse
the removal of the multipath routing cache with the removal of the routing cache; these are two different caches. The
removal of the routing cache took place five years later, in kernel 3.6 (2012).

NOTE ■ CONFIG_IP_ROUTE_MULTIPATH should be set for Multipath Routing Support.

Summary
This chapter covered advanced IPv4 routing topics, like Multicast Routing, the IGMP protocol, Policy Routing, and
Multipath Routing. You learned about the fundamental structures of Multicast Routing, such as the multicast table
(mr_table), the multicast forwarding cache (MFC), the Vif device, and more. You also learned what should be done
to set a host to be a multicast router, and all about the use of the ttl field in Multicast Routing. Chapter 7 deals with
the Linux neighbouring subsystem. The “Quick Reference” section that follows covers the top methods related to the
topics discussed in this chapter, ordered by their context.

Quick Reference
I conclude this chapter with a short list of important routing subsystem methods (some of which were mentioned in
this chapter), a list of macros, and procfs multicast entries and tables.

Methods
Let’s start with the methods:

int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,

unsigned int optlen);

This method handles setsockopt() calls from the multicast routing daemon. The supported socket options are:
MRT_INIT, MRT_DONE, MRT_ADD_VIF, MRT_DEL_VIF, MRT_ADD_MFC, MRT_DEL_MFC, MRT_ADD_MFC_PROXY,
MRT_DEL_MFC_PROXY, MRT_ASSERT, MRT_PIM (when PIM support is set), and MRT_TABLE (when Multicast
Policy Routing is set).

int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int

__user *optlen);

This method handles getsockopt() calls from the multicast routing daemon. The supported socket options are
MRT_VERSION, MRT_ASSERT and MRT_PIM.

CHAPTER 6 ■ ADVANCED ROUTING

161

struct mr_table *ipmr_new_table(struct net *net, u32 id);

This method creates a new multicast routing table. The id of the table will be the specified id.

void ipmr_free_table(struct mr_table *mrt);

This method frees the specified multicast routing table and the resources attached to it.

int ip_mc_join_group(struct sock *sk , struct ip_mreqn *imr);

This method is for joining a multicast group. The address of the multicast group to be joined is specified in the given
ip_mreqn object. The method returns 0 on success.

static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt, __be32 origin,

__be32 mcastgrp);

This method performs a lookup in the IPv4 multicast routing cache. It returns NULL when no entry is found.

bool ipv4_is_multicast(__be32 addr);

This method returns true if the address is a multicast address.

int ip_mr_input(struct sk_buff *skb);

This method is the main IPv4 multicast Rx method (net/ipv4/ipmr.c).

struct mfc_cache *ipmr_cache_alloc(void);

This method allocates a multicast forwarding cache (mfc_cache) entry.

static struct mfc_cache *ipmr_cache_alloc_unres(void);

This method allocates a multicast routing cache (mfc_cache) entry for the unresolved cache and sets the expires field
of the queue of unresolved entries.

void fib_select_multipath(struct fib_result *res);

This method is called to determine the nexthop when working with Multipath Routing.

int dev_set_allmulti(struct net_device *dev, int inc);

This method increments/decrements the allmulti counter of the specified network device according to the specified
increment (the increment can be a positive number or a negative number).

CHAPTER 6 ■ ADVANCED ROUTING

162

int igmp_rcv(struct sk_buff *skb);

This method is the receive handler for IGMP packets.

static int ipmr_mfc_add(struct net *net, struct mr_table *mrt, struct mfcctl *mfc, int

mrtsock, int parent);

This method adds a multicast cache entry; it is invoked by calling setsockopt() from userspace with MRT_ADD_MFC.

static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent);

This method deletes a multicast cache entry; it is invoked by calling setsockopt() from userspace with MRT_DEL_MFC.

static int vif_add(struct net *net, struct mr_table *mrt, struct vifctl *vifc, int

mrtsock);

This method adds a multicast virtual interface; it is invoked by calling setsockopt() from userspace with
MRT_ADD_VIF.

static int vif_delete(struct mr_table *mrt, int vifi, int notify, struct list_head *head);

This method deletes a multicast virtual interface; it is invoked by calling setsockopt() from userspace with
MRT_DEL_VIF.

static void ipmr_expire_process(unsigned long arg);

This method removes expired entries from the queue of unresolved entries.

static int ipmr_cache_report(struct mr_table *mrt, struct sk_buff *pkt, vifi_t vifi, int

assert);

This method builds an IGMP packet, setting the type in the IGMP header to be the specified assert value and the
code to be 0. This IGMP packet is delivered to the userspace multicast routing daemon by calling the sock_queue_
rcv_skb() method. The assert parameter can be assigned one of these values: IGMPMSG_NOCACHE, when an
unresolved cache entry is added to the queue of unresolved entries and wants to notify the userspace routing daemon
that it should resolve it, IGMPMSG_WRONGVIF, and IGMPMSG_WHOLEPKT.

static int ipmr_device_event(struct notifier_block *this, unsigned long event,

void *ptr);

This method is a notifier callback which is registered by the register_netdevice_notifier() method; when some
network device is unregistered, a NETDEV_UNREGISTER event is generated; this callback receives this event and
deletes the vif_device objects in the vif_table, whose device is the one that was unregistered.

CHAPTER 6 ■ ADVANCED ROUTING

163

static void mrtsock_destruct(struct sock *sk);

This method is called when the userspace routing daemon calls setsockopt() with MRT_DONE. This method
nullifies the multicast routing socket (mroute_sk of the multicast routing table), decrements the mc_forwarding
procfs entry, and calls the mroute_clean_tables() method to free resources.

Macros
This section describes our macros.

MFC_HASH(a,b)

This macro calculates the hash value for adding entries to the MFC cache. It takes the group multicast address and the
source IPv4 address as parameters.

VIF_EXISTS(_mrt, _idx)

This macro checks the existence of an entry in the vif_table; it returns true if the array of multicast virtual devices
(vif_table) of the specified multicast routing table (mrt) has an entry with the specified index (_idx).

Procfs Multicast Entries
The following is a description of two important procfs multicast entries:

/proc/net/ip_mr_vif

Lists all the multicast virtual interfaces; it displays all the vif_device objects in the multicast virtual device table
(vif_table). Displaying the /proc/net/ip_mr_vif entry is handled by the ipmr_vif_seq_show() method.

/proc/net/ip_mr_cache

The state of the Multicast Forwarding Cache (MFC). This entry shows the following fields of all the cache entries: group
multicast address (mfc_mcastgrp), source IP address (mfc_origin), input interface index (mfc_parent), forwarded
packets (mfc_un.res.pkt), forwarded bytes (mfc_un.res.bytes), wrong interface index (mfc_un.res.wrong_if),
the index of the forwarding interface (an index in the vif_table), and the entry in the mfc_un.res.ttls array
corresponding to this index. Displaying the /proc/net/ip_mr_cache entry is handled by the ipmr_mfc_seq_show()
method.

CHAPTER 6 ■ ADVANCED ROUTING

164

Table
And finally, here in Table 6-1, is the table of rule selectors.

Table 6-1. IP Rule Selectors

Linux Symbol Selector Member of fib_rule fib4_rule

FRA_SRC from src (fib4_rule)

FRA_DST to dst (fib4_rule)

FRA_IIFNAME iif iifname (fib_rule)

FRA_OIFNAME oif oifname (fib_rule)

FRA_FWMARK fwmark mark (fib_rule)

FRA_FWMASK fwmark/fwmask mark_mask (fib_rule)

FRA_PRIORITY preference,order,priority pref (fib_rule)

- tos, dsfield tos (fib4_rule)

